(本小题共12分)已知定义在R上的函数f(x)=(a,b,c,d∈R)的图像关于原点对称,且x=1时,f(x)取得极小值(1)求f(x)的解析式;(2)当x∈[-1,1]时,函数图像上是否存在两点,使得过此两点处的切线互相垂直?证明你的结论;(3)设时,求证:|.
(本小题满分12分)已知圆上的动点,点Q在NP上,点G在MP上,且满足.(I)求点G的轨迹C的方程;(II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设 是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.
(本小题满分12分)如图,在直三棱柱中,,是棱上的动点,是中点,,.(Ⅰ)求证:平面;(Ⅱ)若二面角的大小是,求的长.
(本小题满分12分)按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动).某校高一·一班50名学生在上学期参加活动的次数统计如条形图所示.(Ⅰ)求该班学生参加活动的人均次数;(Ⅱ)从该班中任意选两名学生,求他们参加活动次数恰好相等的概率;(Ⅲ)从该班中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.(要求:答案用最简分数表示)
(本小题满分12分)在中,分别为角的对边,且满足(Ⅰ)求角的大小;(Ⅱ)若,求的最小值.
曲线C上任一点到点,的距离的和为12,C与x轴的负半轴、正半轴依次交于A、B两点,点P在C上,且位于x轴上方,.(Ⅰ)求曲线C的方程;(Ⅱ)求点P的坐标;(Ⅲ)以曲线C的中心为圆心,AB为直径作圆O,过点P的直线l截圆O的弦MN长为,求直线l的方程.