(本小题满分12分)按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动).某校高一·一班50名学生在上学期参加活动的次数统计如条形图所示.(Ⅰ)求该班学生参加活动的人均次数;(Ⅱ)从该班中任意选两名学生,求他们参加活动次数恰好相等的概率;(Ⅲ)从该班中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.(要求:答案用最简分数表示)
(本小题满分12分)某饮料公司招聘了一名员工,现对其进行一项测试,以使确定工资级别,公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料,若4杯都选对,则月工资定为3500元,若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,令X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.
(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值.
(本小题满分12分)已知等比数列中,,公比.(I)为的前n项和,证明:(II)设,求数列的通项公式
(本小题满分10分)选修4-5:不等式选讲设函数,其中.(I)当a=1时,求不等式的解集.(II)若不等式的解集为{x|,求a的值.
(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线的参数方程为为参数),M为上的动点,P点满足,点P的轨迹为曲线.(I)求的方程;(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为A,与的异于极点的交点为B,求|AB|.