如图,平面平面,是以为斜边的等腰直角三角形,分别为,,的中点,,.(1)设是的中点,证明:平面;(2)证明:在内存在一点,使平面,并求点到,的距离.
如图,已知椭圆的右顶点为A(2,0),点P(2e,)在椭圆上(e为椭圆的离心率).(1)求椭圆的方程;(2)若点B,C(C在第一象限)都在椭圆上,满足,且,求实数λ的值.
甲、乙两地相距1000,货车从甲地匀速行驶到乙地,速度不得超过80,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的倍,固定成本为a元.(1)将全程运输成本y(元)表示为速度v()的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大的速度行驶?
如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.
在△ABC中,设角A,B,C的对边分别为a,b,c,且.(1)求角A的大小;(2)若,,求边c的大小.
设等差数列的前项和为,已知,.(1)求;(2)若从中抽取一个公比为的等比数列,其中,且,.①当取最小值时,求的通项公式;②若关于的不等式有解,试求的值.