我市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a(a>0)件. 通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为x (0<x<1),那么月平均销售量减少的百分率为x2.记改进工艺后,旅游部门销售该纪念品的月平均利润是y(元)(Ⅰ)写出y与x的函数关系式;(Ⅱ)改进工艺后,确定该纪念品的销售价,使旅游部门销售该纪念品的月平均利润最大.
设计一幅宣传画,要求画面面积为4840 cm2,画面的宽与高的比为λ(λ<1),画面的上下各留8 cm的空白,左右各留5 cm的空白,问怎样确定画面的高与宽的尺寸,能使宣传画所用纸张面积最小?如果λ∈,那么λ为何值时,能使宣传画所用纸张面积最小
围建一个面积为360 m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米),修建此矩形场地围墙的总费用为y(单位:元). (1)将y表示为x的函数; (2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
设a、b、c均为实数,求证:++≥++
已知a、b、c∈R,求证:a2+b2+c2+4≥ab+3b+2c.
设函数f(x)=|x-1|+|x-a|. (1)若a=-1,解不等式f(x)≥3; (2)如果∀x∈R,f(x)≥2,求a的取值范围