2010年上海世博会某国要建一座八边形(不一定为正八边形)的展馆区(如图),它的主体造型的平面图是由二个相同的矩形和构成的面积为m2的十字型地域,计划在正方形上建一座“观景花坛”,造价为元/m2,在四个矩形上(图中阴影部分)铺花岗岩地坪,造价为元/m2,再在四个空角(如等)上铺草坪,造价为元/m2. 设总造价为元,长为m.(1)用表示矩形的边的长(1)试建立与的函数关系(2)当为何值时,最小?并求这个最小值
(本题满分12分 )某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(Ⅰ)补全频率分布直方图并求、、的值;(Ⅱ)从岁年龄段的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中选取人作为领队,记选取的名领队中年龄在岁的人数为,求的分布列和期望.
(本小题满分12分)在中,分别为角的对边,向量,且.(Ⅰ)求角的大小; (Ⅱ)若,求的值.
设直线l与抛物线y2=2px(p>0)交于A、B两点,已知当直线l经过抛物线的焦点且与x轴垂直时,△OAB的面积为(O为坐标原点).(Ⅰ)求抛物线的方程;(Ⅱ)当直线l经过点P(a,0)(a>0)且与x轴不垂直时,若在x轴上存在点C,使得△ABC为等边三角形,求a的取值范围.
设函数在点A(1,f(1))处的切线平行于x轴.(Ⅰ)当时,讨论函数的单调性;(Ⅱ)证明:当a=-3时,对任意,都有
在正三棱柱ABC—A1B1C1中,D是棱AA1上一点,平面BC1D⊥平面BB1C1C,AB=AA1=2.(Ⅰ)求点A到平面BC1D的距离;(Ⅱ)求直线A1B与平面BC1D所成的角的正弦值.