(本小题满分14分)为了检测某条生产线上产品的尺寸。现从该条生产线上每隔一定时间取一件产品,共取了50件,测得其产品尺寸后,画得其频率分布直方图如下。
O
(本小题满分12分) 如图,在四棱锥中,,,,平面平面,是线段上一点,,,. (1)证明:平面; (2)设三棱锥与四棱锥的体积分别为与,求的值.
(本小题满分14分) 已知向量与向量垂直,其中为第二象限角. (1)求的值; (2)在中,分别为所对的边,若,求的值.
((本小题满分13分) 已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线相切。 (1)求椭圆C的方程; (2)设轴对称的任意两个不同的点,连结交椭圆 于另一点,证明:直线与x轴相交于定点; (3)在(2)的条件下,过点的直线与椭圆交于、两点,求的取值 范围。
((本小题满分13分) 设数列为等差数列,且a5=14,a7=20。 (I)求数列的通项公式; (II)若
((本小题满分13分) 某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米. (1)分别写出用表示和的函数关系式(写出函数定义域); (2)怎样设计能使取得最大值,最大值为多少?