(本小题满分12分)如图,在四棱锥中,,,,平面平面,是线段上一点,,,.(1)证明:平面;(2)设三棱锥与四棱锥的体积分别为与,求的值.
如图五面体中,四边形ABCD是矩形,DA⊥平面ABEF,AB∥EF,AB=EF=2,AF=BE=2,P、Q、M分别为AE、BD、EF的中点. (1)求证:PQ∥平面BCE; (2)求证:AM⊥平面ADF.
如图,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点. (1)求证:AC⊥SD; (2)若SD⊥平面PAC,求二面角PACD的大小; (3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.
如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点. (1)求证:DE∥平面BCP. (2)求证:四边形DEFG为矩形. (3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.
如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点. (1)求证:BF∥平面A′DE; (2)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值.
如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1. (1)求证:AF∥平面BDE; (2)求证:CF⊥平面BDE.