一自来水厂拟建一座平面图形为矩形、面积为200平方米的净水处理池,该池的深度为1米,池的四周内壁建造单价为每平方米400元,池底建造单价为每平方米60元,在该水池长边的正中间设置一个隔层,将水池分成左右两个小水池,该隔层建造单价为每平方米100元,池壁厚度忽略不计.(1)净水池的长度设计为多少米时,可使总造价最低?(2)如长宽都不能超过14.5米,那么此净水池的长为多少时,可使总造价最低?
(本题满分12分)已知函数在定义域上是奇函数,又是减函数。 (Ⅰ)证明:对任意的,有 (Ⅱ)解不等式。
已知函数是在上每一点处均可导的函数,若在上恒成立。 (1)①求证:函数在上是增函数; ②当时,证明:; (2)已知不等式在且时恒成立,求证:…
如图,在底面是直角梯形的四棱锥P—ABCD中,AD∥BC,∠DAB=90º,PA⊥平面ABCD,PA=AB=BC=1,AD=2,M是PD的中点。 (1)求证:MC∥平面PAB; (2)在棱PD上求一点Q,使二面角Q—AC—D的正切值为。
已知数列、满足:,,。 (1)求数列的通项公式; (2)若,求数列{}的前n项和。
已知函数 (1)求的单调区间以及极值; (2)函数的图像是否为中心对称图形?如果是,请给出严格证明;如果不是,请说明理由。