一自来水厂拟建一座平面图形为矩形、面积为200平方米的净水处理池,该池的深度为1米,池的四周内壁建造单价为每平方米400元,池底建造单价为每平方米60元,在该水池长边的正中间设置一个隔层,将水池分成左右两个小水池,该隔层建造单价为每平方米100元,池壁厚度忽略不计.(1)净水池的长度设计为多少米时,可使总造价最低?(2)如长宽都不能超过14.5米,那么此净水池的长为多少时,可使总造价最低?
已知向量= , =(1,2)(1)若∥ ,求tan的值。(2)若||=, ,求的值
(1)求的值.(2)若,,,求的值.
已知∈(0,),且,求的值.
已知函数,其中常数。(1)当时,求函数的单调递增区间;(2)当时,是否存在实数,使得直线恰为曲线的切线?若存在,求出的值;若不存在,说明理由;(3)设定义在上的函数的图象在点处的切线方程为,当时,若在内恒成立,则称为函数的“类对称点”。当,试问是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标;若不存在,说明理由.
已知数列中,,()(1)求数列的通项公式;(2)设,数列的前项和为,求证: .