某中学举行了一次“上海世博会知识竞赛”,从全校参加竞赛的学生的试卷中,随机抽取了一个样本,考察竞赛的成绩分布(得分均为整数,满分100分),将样本分成5组,绘成频率分布直方图,图中从左到右各小组的长方形的高之比为1:3:6:4:2,最右边一组的频数是6.请结合直方图提供的信息,解答下列问题:(Ⅰ)样本容量是多少?(Ⅱ)成绩落在那个范围内的人数最多?并求该小组的频数、频率;(Ⅲ)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.
已知函数. (Ⅰ)若; (Ⅱ)求函数在上最大值和最小值.
设函数f(x)=xn(n≥2,n∈N*) (1)若Fn(x)=f(x-a)+f(b-x)(0<a<x<b),求Fn(x)的取值范围; (2)若Fn(x)=f(x-b)-f(x-a),对任意n≥a (2≥a>b>0), 证明:F(n)≥n(a-b)(n-b)n-2。
已知,A是抛物线y2=2x上的一动点,过A作圆(x-1)2+y2=1的两条切线分别切圆于EF两点,交抛物线于M.N两点,交y轴于B.C两点 (1)当A点坐标为(8,4)时,求直线EF的方程; (2)当A点坐标为(2,2)时,求直线MN的方程; (3)当A点的横坐标大于2时,求△ABC面积的最小值。
设{an}是由正数组成的等差数列,Sn是其前n项和 (1)若Sn=20,S2n=40,求S3n的值; (2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<S成立; (3)是否存在常数k和等差数列{an},使ka-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。
如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。 (1)求证:B1C1⊥平面ABB1A1; (2)在CC1上是否存在一点E,使得∠BA1E=45°,若存在,试确定E的位置,并判断平面A1BD与平面BDE是否垂直?若不存在,请说明理由。