(本小题满分14分)已知复数,为虚数单位,(1)当复数纯虚数,求的值;(2)当复数在复平面上的对应点位于第二、四象限角平分线上,求的值.(3)若,求
设函数(其中),,已知它们在处有相同的切线. (1)求函数,的解析式; (2)求函数在上的最小值; (3)若对恒成立,求实数的取值范围.
过椭圆的左顶点作斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知. (1)求椭圆的离心率; (2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.
已知正项数列,其前项和满足且是和的等比中项. (1)求数列的通项公式; (2) 符号表示不超过实数的最大整数,记,求.
如图,矩形所在的平面和平面互相垂直,等腰梯形中,∥,=2,,,,分别为,的中点,为底面的重心. (1)求证:∥平面; (2)求直线与平面所成角的正弦值.
一个袋子中装有7个小球,其中红球4个,编号分别为1,2,3,4,黄球3个,编号分别为2,4,6,从袋子中任取4个小球(假设取到任一小球的可能性相等). (1)求取出的小球中有相同编号的概率; (2)记取出的小球的最大编号为,求随机变量的分布列和数学期望.