(本小题满分14分)已知.(1)若时,恒成立,求的取值范围;(2)若,解关于的不等式
为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.(1)求第四小组的频率和参加这次测试的学生人数;(2)在这次测试中,学生跳绳次数的中位数落在第几小组内?(3)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?
某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别是0.3、0.2、0.1、0.4,求: (1)他乘火车或乘飞机去的概率; (2)他不乘轮船去的概率 (3)如果他乘交通工具去的概率为0.5,请问他有可能是乘何种交通工具去的?
已知双曲线与椭圆共焦点,且以为渐近线,求双曲线方程.
已知椭圆的上顶点为(0,2),且离心率为,(Ⅰ)求椭圆C的方程;(Ⅱ)证明:过圆上一点的切线方程为;(Ⅲ)从椭圆C上一点P向圆上向引两条切线,切点为A,B,当直线AB分别与x轴、y轴交于M,N两点时,求的最小值.
已知双曲线的焦距为2c,右顶点为A,抛物线的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且,求双曲线的渐近线方程.