(本小题满分14分)某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从种服装商品, 种家电商品, 种日用商品中,选出种商品进行促销活动.(Ⅰ)试求选出的种商品中至多有一种是家电商品的概率;(Ⅱ)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高元,同时,若顾客购买该商品,则允许有次抽奖的机会,若中奖,则每次中奖都获得数额为元的奖券.假设顾客每次抽奖时获奖的概率都是,若使促销方案对商场有利,则最少为多少元?
(本小题满分15分)已知函数(R)的一个极值点为.(1) 求的值和的单调区间;(2)若方程的两个实根为, 函数在区间上单调,求的取值范围。
(本小题满分14分)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到DA1EF的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)(Ⅰ)求证:A1E⊥平面BEP;(Ⅱ)求直线A1E与平面A1BP所成角的大小。
(本小题满分14分)设数列的前项和为,已知,(1)令求证:是等比数列;(2)令,设是数列的的前项和,求满足不等式的的最小值。
(本小题满分14分)已知函数,其中(1)求函数在区间上的单调递增区间和值域;(2)在中,,,分别是角的对边, ,且的面积,求边的值.
已知的三个顶点在抛物线上,是抛物线的焦点,且,.(Ⅰ)求抛物线的方程;(Ⅱ)若直线与上述抛物线相交于点,直线过点且与处的切线垂直. 求证:直线关于直线的对称直线经过定点.