(本题10分)上海“世博会”举办时间为2010年5月1日~10月31日.陕西馆以“人文长安之旅”为主题,以“昔日皇家园林”华清池为原型,塑造“人文陕西、山水秦岭”的新形象.为宣传陕西,要设计如图的一张矩形广告,该广告含有大小相等的左中右三个矩形栏目,这三栏的面积之和为,四周空白的宽度为,栏与栏之间的中缝空白的宽度为,怎样确定广告矩形栏目高与宽的尺寸(单位:),能使整个矩形广告面积最小.
(本小题满分12分)将编号为1,2,3,4的四张同样材质的卡片,随机放入编码分别为1,2,3,4的四个小盒中,每盒仅放一张卡片,若第号卡片恰好落入第号小盒中,则称其为一个匹对,用表示匹对的个数. (1)求第2号卡片恰好落入第2号小盒内的概率; (2)求匹对数的分布列和数学期望.
(本小题满分12分) 设函数,其中向量. (1)求函数的最小正周期和在上的单调递增区间; (2)中,角所对的边为,且,求的取值范围.
(本小题满分12分)已知公差大于零的等差数列,且为等比数列的前三项. (1)求的通项公式; (2)设数列的前n项和为,求.
(本小题满分14分)已知函数,其中. (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)当时,求的单调区间; (Ⅲ)证明:对任意的在区间内均存在零点.
(本小题满分12分)已知A(,0),B(,0)为平面内两定点,动点P满足|PA|+|PB|=2. (I)求动点P的轨迹方程; (II)设直线与(I)中点P的轨迹交于M、N两点.求△BMN的最大面积及此时直线l的方程.