某游戏设有两关,只有过了第一关才能玩第二关,每关最多玩两次,连续两次失败者被淘汰.过关者可获奖金, v只过第一关获900元,两关全过获3600元。某人过每一关的概率均为,各次过关与否互不影响,且此人不放弃所有机会。(1)求该人获得900元奖金的概率(2)若该人已顺利通过第一关,求他获得3600元奖金的概率(3)求该人获得奖金额X的数学期望E(X) (精确到元)
已知椭圆的离心率为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切. (1)求椭圆的方程; (2)设,过点作与轴不重合的直线交椭圆于、两点,连结、分别交直线于、两点.试问直线、的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由.
小明家订了一份报纸,寒假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示. (1)根据图中的数据信息,写出众数; (2)小明的父亲上班离家的时间在上午之间,而送报人每天在时刻前后 半小时内把报纸送达(每个时间点送达的可能性相等). ①求小明的父亲在上班离家前能收到报纸(称为事件)的概率; ②求小明的父亲周一至周五在上班离家前能收到报纸的天数的数学期望.
如图,在四棱锥中,平面,底面是直角梯形,,∥,且,,为的中点. (1)设与平面所成的角为,二面角的大小为,求证:; (2)在线段上是否存在一点(与两点不重合),使得∥平面? 若存在,求的长;若不存在,请说明理由.
已知数列是等差数列,是等比数列,其中,,且为、的等差中项,为、的等差中项. (1)求数列与的通项公式; (2)记,求数列的前项和.
已知向量,设函数 (1)求函数的单调递增区间; (2)在中,角、、的对边分别为、、,且满足,,求的值.