(本题16分)函数在同一个周期内,当时取最大值1,当时,取最小值。(1)求函数的解析式(2)函数的图象经过怎样的变换可得到的图象?(3)若函数满足方程求在内的所有实数根之和.
如图,三棱柱ABC-A1B1C1的侧棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中点,F是AB的中点,AC=BC=1,AA1=2.(1)求证:CF∥平面AB1E;(2)求三棱锥C-AB1E在底面AB1E上的高.
如图,已知四棱锥P-ABCD的底面为直角梯形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=AB=1,M是PB的中点.(1)求证:AM=CM;(2)若N是PC的中点,求证:DN∥平面AMC.
如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PB=PD=2,PA=. (1)证明:PC⊥BD;(2)若E为PA的中点,求三棱锥P-BCE的体积.
如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC中点. (1)证明:A1O⊥平面ABC;(2)若E是线段A1B上一点,且满足VE-BCC1=·VABC-A1B1C1,求A1E的长度.
已知点集L={(x,y)|y=m·n},其中m=(2x-2b,1),n=(1,1+2b),点列Pn(an,bn)在点集L中,P1为L的轨迹与y轴的交点,已知数列{an}为等差数列,且公差为1,n∈N*.(1)求数列{an},{bn}的通项公式;(2)求·OPn+1的最小值;(3)设cn= (n≥2),求c2+c3+c4+…+cn的值.