求抛物线y=2x2与直线y=2x所围成平面图形的面积。
(满分14分)在斜四棱柱中,已知底面是边长为4的菱形,,且点在面上的射影是底面对角线与AC的交点O,设点E是的中点,.(Ⅰ) 求证:四边形是矩形;(Ⅱ) 求二面角的大小; (Ⅲ) 求四面体的体积.
如图,在棱长为1的正方体中,(I)在侧棱上是否存在一个点P,使得直线与平面所成角的正切值为;(Ⅱ)若P是侧棱上一动点,在线段上是否存在一个定点,使得在平面上的射影垂直于.并证明你的结论.
正方形ABCD边长为4,点E是边CD上的一点,将AED沿AE折起到的位置时,有平面 平面ABCE,并且(如图)(I)判断并证明E点的具体位置;(II)求点D/到平面ABCE的距离.
四棱锥中,底面ABCD是一个平行四边形,,, (1)求四棱锥的体积; (2)定义=,对于向量,,有,则=__________.
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD, ,,E是BD的中点. (1)求证:EC//平面APD;(2)求BP与平面ABCD所成角的正切值;(3) 求二面角P-AB-D的大小.