(本小题满分14分)一束光线通过点M(-3,3)射到x轴上,然后反射到圆C上,其中圆C满足以下条件:过点A(1,2)和点B(2,3)且圆心在直线上。(1)求圆C的方程;(2)求通过圆C圆心的反射光线所在直线的方程;(3)若反射光线所在直线与圆C相切,求入射光线所在直线的方程
已知等差数列{an}中,a2=8,前10项和S10=185.(1)求通项an;(2)若从数列{an}中依次取第2项、第4项、第8项…第2n项……按原来的顺序组成一个新的数列{bn},求数列{bn}的前n项和Tn.
数列{an}中,a1=8,a4=2且满足an+2=2an+1-an n∈N (1)求数列{an}的通项公式; (2)设Sn=|a1|+|a2|+…+|an|,求sn; (3)设bn= ( n∈N),Tn=b1+b2+…+bn( n∈N),是否存在最大的整数m,使得对任意n∈N,均有Tn>成立?若存在,求出m的值;若不存在,请说明理由。
在数列中,,.(1)求数列的前项和;(2)证明不等式,对任意皆成立。
已知等差数列的前项和为,,且,. ⑴.求数列的通项公式; ⑵.求证:.