(本小题满分12分)求与x轴相切,圆心在直线上,且被直线截得的弦长为的圆的方程。
已知椭圆C的中心在原点,焦点在x轴上,离心率等于 ,它的一个顶点恰好是抛物线的焦点.(Ⅰ)求椭圆C的方程;(Ⅱ)点P(2,3), Q(2,-3)在椭圆上,A,B是椭圆上位于直线PQ两恻的动点,①若直线AB的斜率为,求四边形APBQ面积的最大值;②当A、B运动时,满足于∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
如图,在直三棱柱中,平面 侧面且.(Ⅰ)求证:; (Ⅱ)若直线AC与平面所成的角为,求锐二面角的大小.
现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏。(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记 ,求随机变量的分布列与数学期望 .
在△A BC,a,b,c分别是角A,B,C的对边,且.(Ⅰ)求B的大小;(Ⅱ)若 ,求△A BC的面积.
对于函数,若存在,使成立,则称为的不动点.已知函数.(1)当时,求的不动点;(2)若对于任意实数,函数恒有两个相异的不动点,求的取值范围.