已知点P(2,0),及·C:x2+y2-6x+4y+4=0. 当直线l过点P且与圆心C的距离为1时,求直线l的方程。
(本题14分) 已知向量动点到定直线的距离等于并且满足其中O是坐标原点,是参数. (I)求动点的轨迹方程,并判断曲线类型; (Ⅱ) 当时,求的最大值和最小值; (Ⅲ) 如果动点M的轨迹是圆锥曲线,其离心率满足求实数的取值范围.
(本题13分) 已知等比数列的前项和是,满足. (Ⅰ)求数列的通项及前项和; (Ⅱ)若数列满足,求数列的前项和; (Ⅲ)若对任意的,恒有成立,求实数的取值范围.
(本题12分) 已知函数与函数. (I)若的图象在点处有公共的切线,求实数的值; (Ⅱ)设,求函数的极值.
本题12分) 长方体中,,,是底面对角线的交点. (Ⅰ) 求证:平面; (Ⅱ) 求证:平面; (Ⅲ) 求三棱锥的体积.
(本题12分) 某家具城进行促销活动,促销方案是:顾客每消费1000元,便可以获得奖券一张,每张奖券中奖的概率为,若中奖,则家具城返还顾客现金200元. 某顾客购买一张价格为3400元的餐桌,得到3张奖券. (I)求家具城恰好返还该顾客现金200元的概率; (II)求家具城至少返还该顾客现金200元的概率.