已知数列{an}有a1 = a,a2 = p(常数p > 0),对任意的正整数n,,且.(1)求a的值;(2)试确定数列{an}是否是等差数列,若是,求出其通项公式;若不是,说明理由;(3)对于数列{bn},假如存在一个常数b,使得对任意的正整数n都有bn< b,且,则称b为数列{bn}的“上渐近值”,令,求数列的“上渐近值”.
(本题18分)已知函数, (1)画出函数图像; (2)求,的值; (3)当时,求取值的集合.
(本题18分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。 (1)当每辆车的月租金定为3600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
(本题17分)已知定义在上的函数是偶函数,且时,,(1)当时,求解析式;(2)写出的单调递增区间.
(本题17分)已知集合,,若,求实数的取值范围.
(本小题满分14分)设数列满足,,。 数列满足是非零整数,且对任意的正整数和自然数,都有。 (1)求数列和的通项公式; (2)记,求数列的前项和。