已知数列{an}有a1 = a,a2 = p(常数p > 0),对任意的正整数n,,且.(1)求a的值;(2)试确定数列{an}是否是等差数列,若是,求出其通项公式;若不是,说明理由;(3)对于数列{bn},假如存在一个常数b,使得对任意的正整数n都有bn< b,且,则称b为数列{bn}的“上渐近值”,令,求数列的“上渐近值”.
(本小题满分16分) 已知等差数列中,,令,数列的前项和为. (1)求数列的通项公式; (2)求证:; (3)是否存在正整数,且,使得,,成等比数列?若存在,求出的值,若不存在,请说明理由.
(本小题满分16分) 已知椭圆的左、右顶点分别A、B,椭圆过点(0,1)且离心率. (1)求椭圆的标准方程; (2)过椭圆上异于A,B两点的任意一点P作PH⊥轴,H为垂足,延长HP到点Q,且PQ=HP,过点B作直线轴,连结AQ并延长交直线于点M,N为MB的中点,试判断直线QN与以AB为直径的圆O的位置关系.
(本小题满分16分) 已知函数的定义域为(0,),且,设点P是函数图象上的任意一点,过点P分别作直线和轴的垂线,垂足分别为M、N. (1)求的值; (2)问:是否为定值?若是,则求出该定值,若不是,请说明理由; (3)设O为坐标原点,求四边形OMPN面积的最小值.
(本小题满分14分) 如图,在半径为的圆形(O为圆心)铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A、C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱的体积为. (1)写出体积V关于的函数关系式; (2)当为何值时,才能使做出的圆柱形罐子体积V最大?
(本小题满分14分) 如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE. (1)求证:AE⊥平面BCE; (2)求证:AE∥平面BFD.