在一个不透明的纸袋里装有5个大小相同的小球,其中有1个红球和4个黄球,规定每次从袋中任意摸出一球,若摸出的是黄球则不再放回,直到摸出红球为止,求摸球次数的期望和方差.
(本小题满分14分)设数列的前项和为,已知,(为常数,,),且成等差数列.(1)求的值;(2)求数列的通项公式;(3)若数列是首项为1,公比为的等比数列,记,,.证明:.
(本小题满分14分)已知的周长为,且,的面积为,(1)求边的长;(2)求的值.
(本小题满分14分)某公司计划2010年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过180000元,甲、乙两个电视台的广告收费标准分别为元/分钟和元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为3000元和2000元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少元?
(本小题满分14分)已知等差数列的前项和为, .(1)求数列的通项公式;(2)当为何值时, 取得最小值.
(本小题满分12分)设.(1)求的最小正周期;(2)求的单调递增区间.