(本小题满分14分)某公司计划2010年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过180000元,甲、乙两个电视台的广告收费标准分别为元/分钟和元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为3000元和2000元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少元?
已知椭圆的离心率为,且过点 (1)求椭圆的标准方程: (2)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,若 (ⅰ)求的最值: (ⅱ)求证:四边形ABCD的面积为定值.
数列的各项均为正数,为其前n项和,对于任意的,总有成等差数列 (1)求数列的通项公式: (2)设数列前n项和为,且,求证对任意的实数和任意的正整数n,总有.
如图,四棱锥中,.,F为PC的中点,. (1)求的长: (2)求二面角的正弦值.
盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同 (1)从盒中一次随机抽出2个球,求取出的2个球颜色相同的概率: (2)从盒中一次随机抽出4个球,其中红球,黄球,绿球的个数分别记为,随机变量X表示中的最大数,求X的概率分布列和数学期望.
已知锐角中,角A、B、C所对的边分别为a,b,c,且 (1)求角A的大小: (2)求的取值范围.