(本大题满分14分) 如图,已知直线L:过椭圆C:的右焦点F,且交椭圆C于A、B两点,点A、B在直线上的射影依次为点D、E.(Ⅰ)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;(Ⅱ)若为x轴上一点;求证: A、N、E三点共线.
已知数列的各项都是正数,且满足: (1)求; (2)证明:
是否存在实数使得关于n的等式 成立?若存在,求出的值并证明等式,若不存在,请说明理由.
有4男3女共7位同学从前到后排成一列. (1)有多少种不同方法? (2)甲不站在排头,有多少种不同方法? (3)三名女生互不相邻,有多少种不同方法? (4)3名女生在队伍中按从前到后从高到矮顺序排列,有多少种不同方法? (5)3名女生必须站在一起,有多少种不同方法?
已知为复数,为实数,求.
已知一个圆与正方形的周长都为1,证明:圆的面积比正方形的面积大.