(本小题满分14分)设等差数列前项和为,则有以下性质:成等差数列. (1) 类比等差数列的上述性质,写出等比数列前项积的类似性质;(2) 证明(1)中所得结论.
在数列中,, (是常数,),且,,成公比不为的等比数列.(1)求的值;(2)求的通项公式.
如图,已知正方形和矩形所在的平面互相垂直,,,是线段的中点.(1)求证∥平面;(2)试在线段上确定一点,使得与所成的角是.
求正弦函数在和附近的平均变化率,并比较它们的大小.
设椭圆方程为,过原点且倾斜角为的两条直线分别交椭圆于A、C和B、D两点.(1)用表示四边形ABCD的面积S;(2)当时,求S的最大值.
若直线y=x+t与椭圆 相交于A、B两点,当t变化时,求|AB|的最大值.