已知椭圆C:其左、右焦点分别为F1、F2,点P是坐标平面内一点,且|OP|=(O为坐标原点)。(1)求椭圆C的方程;(2)过点l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点:若存在,求出M的坐标;若不存在,说明理由。
已知,椭圆经过点,两个焦点的坐标为 (Ⅰ)求椭圆的方程;(Ⅱ)是椭圆上的两个动点,如果直线的斜率与的斜率互为相反数,证明:直线的斜率为定值,并求出这个定值。
(1)证明直线和平面垂直的判定定理,即已知:如图1,且,求证: (2)请用直线和平面垂直的判定定理证明:如果一条直线垂直于两个平行平面中的一个,那么它也垂直于另一个平面,即 已知:如图2,求证:
已知中心在原点,对称轴为坐标轴的双曲线的一个焦点为 且该双曲线上一点到两个焦点的距离差的绝对值为 (Ⅰ)求双曲线的标准方程. (Ⅱ)过点且倾斜角为的直线与双曲线交于两点,求线段的长。
如图,在正三棱柱中, 为的中点。 (Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值
如图,在四棱锥中,底面为正方形,侧棱底面,,点为的中点。 (Ⅰ)求证:平面; (Ⅱ)求点到平面的距离。