设不等式组所表示的平面区域为Dn,记Dn内整点的个数为an(横纵坐标均为整数的点称为整点).(1)n=2时,先在平面直角坐标系中作出区域D2,再求a2的值;(2)求数列{an}的通项公式;(3)记数列{an}的前n项的和为Sn,试证明:对任意n∈N*,恒有<成立.
(本小题满分13分)已知椭圆:()的右焦点为,且椭圆上一点到其两焦点的距离之和为. (Ⅰ)求椭圆的标准方程; (Ⅱ)设直线与椭圆交于不同两点,,且.若点满足,求的值.
(本小题满分12分)某大型企业一天中不同时刻的用电量(单位:万千瓦时)关于时间(,单位:小时)的函数近似地满足,下图是该企业一天中在0点至12点时间段用电量与时间的大致图象. (Ⅰ)根据图象,求,,,的值; (Ⅱ)若某日的供电量(万千瓦时)与时间(小时)近似满足函数关系式().当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:
(本小题满分12分)已知数列的前项和为,且;数列满足,.. (Ⅰ)求数列,的通项公式; (Ⅱ)记,.求数列的前项和.
(本小题满分12分)如图,为正三角形,平面,,为的中点,,. (Ⅰ)求证:平面; (Ⅱ)求平面与平面所成的锐二面角的余弦值.
(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球. (Ⅰ)求恰有一个黑球的概率; (Ⅱ)记取出红球的个数为随机变量,求的分布列和数学期望.