设数列满足且 (Ⅰ)求,并求数列的通项公式; (Ⅱ)对一切,证明成立; (Ⅲ)记数列的前项和分别是,证明
已知等差数列的前项和为,且. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足,求数列的前项和.
已知函数的最大值为2. (Ⅰ)求函数在上的单调递减区间; (Ⅱ)中,,角所对的边分别是,且,求的面积.
(如图,在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠BAD=60°,对角线AC与BD相交于点O,PO为四棱锥P﹣ABCD的高,且,E、F分别是BC、AP的中点. (1)求证:EF∥平面PCD; (2)求三棱锥F﹣PCD的体积.
如图,在三棱柱中, D是 AC的中点。 求证://平面
如图所示,在正方体ABCD﹣A1B1C1D1中,棱长AB=1. (Ⅰ)求异面直线A1B与 B1C所成角的大小;(Ⅱ)求证:平面A1BD∥平面B1CD1.