(12分)已知函数在与时都取得极值.(1) 求的值;(2) 求函数的单调区间.
(本题满分14分)已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?(Ⅲ)当时,设函数,若在区间上至少存在一个,使得成立,试求实数的取值范围.
(本小题满分12分)已知,,.(1)当时,试比较与的大小关系;(2)猜想与的大小关系,并给出证明.
(本小题满分12分)已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下: 7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P是多少元?(2)设该厂天购买一次配料,求该厂在这天中用于配料的总费用(元)关于的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?
(本小题满分12分)设数列{}的前n项和满足:=n-2n(n-1).等比数列{}的前n项和为,公比为,且=+2.(1)求数列{}的通项公式;(2)设数列{}的前n项和为,求证:≤<.
(本小题满分12分)直三棱柱ABC -A1B1C1中,AB=5,AC=4,BC=3,AA1=4,点D在AB上.(Ⅰ)求证:AC⊥B1C;(Ⅱ)若D是AB中点,求证:AC1∥平面B1CD;(Ⅲ)当时,求二面角的余弦值.