如图,设是椭圆(a>b>0)的左焦点,直线为对应的准线,直线与轴 交于点, 为椭圆的长轴,已知,且. (Ⅰ)求椭圆的标准方程; (Ⅱ)求证:对于任意的割线,恒有; (Ⅲ)求△面积的最大值.
“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为: 且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴. (1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损; (2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
已知直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点. (1)求证:BC1∥平面CA1D; (2)求证:平面CA1D⊥平面AA1B1B; (3)若底面ABC为边长为2的正三角形,BB1=,求三棱锥B1-A1DC的体积.
已知函数. (1)求函数的单调递减区间及最小正周期; (2)设锐角△ABC的三内角A,B,C的对边分别是若,,求
等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6. (1)求数列{an}的通项公式; (2)设,求数列的前n项和.
(1)解关于的不等式; (2)若关于的不等式有解,求实数的取值范围.