如图,圆柱内有一个三棱柱,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径。(Ⅰ)证明:平面平面;(Ⅱ)设AB=,在圆柱内随机选取一点,记该点取自于三棱柱内的概率为。(i)当点C在圆周上运动时,求的最大值;(ii)记平面与平面所成的角为,当取最大值时,求的值。
在中,所对的边长分别为,设满足条件和, (1)求角A的大小; (2)求的值.
已知等比数列前项之和为,,,求和
已知函数,,其中. (1)若是函数的极值点,求实数的值; (2)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围.
已知 (1)当时,求函数的单调区间。 (2)当时,讨论函数的单调增区间。 (3)是否存在负实数,使,函数有最小值-3?
已知函数 (1)求曲线在点处的切线方程; (2)若关于的方程有三个不同的实根,求实数的取值范围.