如图,圆柱内有一个三棱柱,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径。(Ⅰ)证明:平面平面;(Ⅱ)设AB=,在圆柱内随机选取一点,记该点取自于三棱柱内的概率为。(i)当点C在圆周上运动时,求的最大值;(ii)记平面与平面所成的角为,当取最大值时,求的值。
(本小题满分10分)从名男生和名女生中选出人参加学校辩论赛.(Ⅰ)如果人中男生和女生各选人,有多少种选法?(Ⅱ)如果男生中的甲和女生中的乙至少有1人在内,有多少种选法?
函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的一段图象如图所示.(1)求f(x)的解析式;(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合;(3)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数?
在中,,为线段BC的垂直平分线,与BC交与点D,E为上异于D的任意一点,⑴求的值。⑵判断的值是否为一个常数,并说明理由。
设平面上向量=(cosα,sinα) (0°≤α<360°),=(-,).(1)试证:向量与垂直;(2)当两个向量与的模相等时,求角α.
已知圆C:,