如图,椭圆上的点M与椭圆右焦点F1的连线MF1与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.(1)求椭圆的离心率;(2)F2是椭圆的左焦点,C是椭圆上的任一点,证明:∠F1CF2≤ ;(3)过F1且与AB垂直的直线交椭圆于P、Q,若△PF2Q的面积是20,求此时椭圆的方程.
已知。
(本小题满分12分) 已知函数 (I)当时,求曲线在点处的切线方程; (II)当时,讨论的单调性.
(本小题满分12分) 设函数在及时取得极值, (1)求、的值; (2)若对任意的,都有成立,求c的取值范围.
(本小题满分12分) 对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0) (1)若a=1,b=–2时,求f(x)的不动点; (2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(本小题满分12分) 一个小服装厂生产某种风衣,月销售量x(件)与售价P(元/件)之间的关系为P=160-2x,生产x件的成本R=500+30x元 (1)该厂的月产量多大时,月获得的利润不少于1300元? (2)当月产量为多少时,可获得最大利润?最大利润是多少元?