如图,椭圆 C : x 2 a 2 + y 2 b 2 = 1 的顶点为 A 1 , A 2 , B 1 , B 2 ,焦点为 F 1 , F 2 , A 1 B 1 = 7 , S B 1 A 1 B 2 A 2 = 2 S B 1 F 1 B 2 F 2 .
(Ⅰ)求椭圆 C 的方程; (Ⅱ)设 n 为过原点的直线, l 是与 n 垂直相交于 P 点,与椭圆相交于 A , B 两点的直线, O P ⇀ = 1 .是否存在上述直线 l 使 O A ⇀ · O B ⇀ = 0 成立?若存在,求出直线 l 的方程;并说出;若不存在,请说明理由.
(本小题满分12分)已知数列满足,,且对任意都有 (Ⅰ)求,; (Ⅱ)设,证明:是等差数列; (Ⅲ)设,求数列的前n项和.
(本小题满分12分)设. (Ⅰ)求的最大值及最小正周期; (Ⅱ)若锐角满足,求的值.
(本小题满分12分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD="DC=BC=1," AB="2," AB∥DC,∠BCD=900 (1)求证:PC⊥BC (2)求点A到平面PBC的距离
(本小题满分10分)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,求这个多面体最长的一条棱的长.
已知函数的定义域为,对定义域内 的任意、,都有=, 且当时, . (1)求、的值;(2)求证:在上是增函数.