等差数列中,,,求此数列的通项公式;设是数列的前项和,求。
已知定圆圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C. (I)求曲线C的方程; (II)若点为曲线C上一点,求证:直线与曲线C有且只有一个交点.
已知抛物线,点P(1,-1)在抛物线C上,过点P作斜率为k1、k2的两条直线,分别交抛物线C于异于点P的两点A(x1,y1),B(x2,y2),且满足k1+k2=0. (I)求抛物线C的焦点坐标; (II)若点M满足,求点M的轨迹方程.
已知椭圆W的中心在原点,焦点在轴上,离心率为,两条准线间的距离为6. 椭圆W的左焦点为,过左准线与轴的交点任作一条斜率不为零的直线与椭圆W交于不同的两点、,点关于轴的对称点为. (Ⅰ)求椭圆W的方程; (Ⅱ)求证:(); (Ⅲ)求面积的最大值.
已知圆上的动点,点Q在NP上,点G在MP上,且满足. (I)求点G的轨迹C的方程; (II)过点(2,0)作直线,与曲线C交于A、B两点,O是坐标原点,设是否存在这样的直线,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线的方程;若不存在,试说明理由.
已知线段AB过轴上一点,斜率为,两端点A,B到轴距离之差为, (1)求以O为顶点,轴为对称轴,且过A,B两点的抛物线方程; (2)设Q为抛物线准线上任意一点,过Q作抛物线的两条切线,切点分别为M,N,求证:直线MN过一定点;