给出下面的数表序列,其中表 n ( n = 1 , 2 , 3 , … ) 有 n 行,第1行的 n 个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和。
(1)写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表 n ( n ≥ 3 ) (不要求证明);
(2)每个数表中最后一行都只有一个数,它们构成数列1,4,12,…,记此数列为 b n ,求和: b 3 b 1 b 2 + b 4 b 2 b 3 + . . . + b n + 2 b n b n + 1 ( n ∈ N * ) .
已知函数f(x)=cos,x∈R. (1)求f的值; (2)若cos θ=,θ∈,求f.
在△ABC中,a=3,b=2,∠B=2∠A, (1)求cos A的值; (2)求c的值.
函数f(x)=Asin(ωx-)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为. (1)求函数f(x)的解析式; (2)设α∈(0,),f()=2,求α的值.
在△ABC中,∠C=90°,M是BC的中点.若sin∠BAM=,则sin∠BAC=________.
如图,四棱柱ABCD—A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点. (1)证明B1C1⊥CE; (2)求二面角B1CEC1的正弦值; (3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.