(本题12分)已知函数(1)求的最小正周期;(2)若,求的最大值、最小值及相应的x的值。
一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
如图,在三棱柱中,侧面为菱形, 且,,是的中点.(1)求证:平面平面;(2)求证:∥平面.
设函数.(1)求的最小正周期和值域;(2)在锐角△中,角的对边分别为,若且,,求和.
选修4-5:不等式选讲已知,.(1)求的最小值;(2)证明:.
选修4—4:坐标系与参数方程 在直角坐标系中,圆的参数方程为参数).以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程;(2)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.