设 F 1 , F 2 分别为椭圆 C : x 2 a 2 + y 2 b 2 = 1 a > b > 0 的左右焦点,过 F 2 的直线 l 与椭圆 C 相交于 A , B 两点,直线 l 的倾斜角为 60 ° , F 1 到直线 l 的距离为 2 3 . (Ⅰ)求椭圆 C 的焦距; (Ⅱ)如果 A F 2 ⇀ = 2 F 2 B ⇀ ,求椭圆 C 的方程。
如图,已知椭圆C的中心在原点O,焦点在轴上,长轴长是短轴长的2倍,且经过点M. 平行于OM的直线在轴上的截距为并交椭圆C于A、B两个不同点.(1)求椭圆C的标准方程;(2)求m的取值范围; (3)求证:直线MA、MB与x轴始终围成一个等腰三角形.
设定点M,动点N在圆上运动,线段MN的中点为点P.(1)求MN的中点P的轨迹方程;(2)直线与点P的轨迹相切,且在轴.轴上的截距相等,求直线的方程.
某工厂计划生产A.B两种涂料,生产A种涂料1t需要甲种原料1t.乙种原料2t,可获利润3千元;生产B种涂料1t需要甲种原料2t,乙种原料1t,可获利润2千元,又知该工厂甲种原料的用量不超过400t,乙种原料的用量不超过500t,问如何安排生产才能获得最大利润?(注:t表示重量单位“吨”)
如果方程表示一个圆,(1)求的取值范围;(2)当m=0时的圆与直线相交,求直线的倾斜角的取值范围.
设集合A=<,集合B=>,若,求实数的取值范围.