知函数的图象在点处的切线方程是.(1)求函数的解析式; (2)设函数,若的极值存在,求实数的取值范围
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的轴的正半轴重合.直线的参数方程是(为参数),曲线的极坐标方程为. (Ⅰ)求曲线的直角坐标方程; (Ⅱ)设直线与曲线相交于,两点,求,两点间的距离.
如图,△内接于⊙,,直线切⊙于点,弦,相交于点. (Ⅰ)求证:△≌△; (Ⅱ)若,求长.
设函数 (Ⅰ)时,求的单调区间; (Ⅱ)当时,设的最小值为恒成立,求实数t的取值范围.
在平面直角坐标系中,设点,坐标原点在以线段为直径的圆上 (Ⅰ)求动点的轨迹C的方程; (Ⅱ)过点的直线与轨迹C交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论.
某校为了解高一年级学生身高情况,按10%的比例对全校700名高一学生按性别进行抽样检查,测得身高频数分布表如下: 表1:男生身高频数分布表
表2:女生身高频数分布表
(Ⅰ)求该校高一男生的人数; (Ⅱ)估计该校高一学生身高(单位:cm)在[165,180)的概率; (Ⅲ)在男生样本中,从身高(单位:cm)在[180,190)的男生中任选3人,设ξ表示所选3人中身高(单位:cm)在[180,185)的人数,求ξ的分布列和数学期望.