如图,在平行四边形 A B C D 中, A B = 2 B C , ∠ A B C = 120 ° 。 E 为线段 A B 的中点,将 △ A D E 沿直线 D E 翻折成 △ A ` D E ,使平面 A ` D E ⊥ 平面 B C D , F 为线段 A ` C 的中点.
(Ⅰ)求证: B F / / 平面 A ` D E ; (Ⅱ)设 M 为线段 D E 的中点,求直线 F M 与平面 A ` D E 所成角的余弦值。
(本小题满分12分)某市教育局责成基础教育处调查本市学生的身高情况,基础教育处随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示: (1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差; (3)现从各班身高最高的5名同学中各取一人,求甲班同学身高不低于乙班同学的概率.
(本小题满分12分)递减等差数列中,,, ①求的通项公式. ②若bn=,求的前n项和.
(本小题满分10分)选修;不等式选讲 设函数. (1)解不等式; (2)求函数的最小值.
. 给定椭圆>>0,称圆心在原点,半径为的圆是椭圆的“伴随圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为. (1)求椭圆的方程及其“伴随圆”方程; (2)若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆的“伴随圆”相交于M、N两点,求弦MN的长; (3)点是椭圆的“伴随圆”上的一个动点,过点作直线,使得与椭圆都只有一个公共点,求证:。
. 已知函数. ⑴若,求曲线在点处的切线方程; ⑵若函数在其定义域内为增函数,求正实数的取值范围;