已知椭圆上的点到椭圆右焦点的最大距离为,离心率,直线过点与椭圆交于两点.(1)求椭圆的方程;(2)上是否存在点,使得当绕转到某一位置时,有成立?若存在,求出所有点的坐标与的方程;若不存在,说明理由.
设全集I=R,已知集合M={x|(x+3)2≤0},N={x|x2+x-6=0}. (1)求(∁IM)∩N; (2)记集合A=(∁IM)∩N,已知集合B={x|a-1≤x≤5-a,a∈R},若B∪A=A,求实数a的取值范围.
已知抛物线,为抛物线的焦点, 为抛物线上的动点,过作抛物线准线的垂线,垂足为. (1)若点与点的连线恰好过点,且,求抛物线方程; (2)设点在轴上,若要使总为锐角,求的取值范围.
已知函数(∈R). (1)若函数在区间上有极小值点,求实数的取值范围; (2)若当时,,求实数的取值范围.
如图,底面为正三角形,面, 面,,设为的中点. (1)求证:平面; (2)求直线与平面所成角的正弦值.
设数列的前项积为,且(n∈N*). (1)求,并证明:; (2)设, 求数列的前项和.