已知椭圆上的点到椭圆右焦点的最大距离为,离心率,直线过点与椭圆交于两点.(1)求椭圆的方程;(2)上是否存在点,使得当绕转到某一位置时,有成立?若存在,求出所有点的坐标与的方程;若不存在,说明理由.
已知函数是奇函数.(1)求实数m的值;(2)是否存在实数,当时,函数的值域是.若存在,求出实数;若不存在,说明理由;(3)令函数,当时,求函数的最大值.
如图,在长为10千米的河流OC的一侧有一条观光带,观光带的前一部分为曲线段OAB,设曲线段OAB为函数,(单位:千米)的图象,且图象的最高点为;观光带的后一部分为线段BC.(1)求函数为曲线段OABC的函数的解析式;(2)若计划在河流OC和观光带OABC之间新建一个如图所示的矩形绿化带MNPQ,绿化带由线段MQ,QP,PN构成,其中点P在线段BC上.当OM长为多少时,绿化带的总长度最长?
已知函数f(x)=2ax+(a∈R).(1)当时,试判断f(x)在上的单调性并用定义证明你的结论;(2)对于任意的,使得f(x)≥6恒成立,求实数a的取值范围.
已知函数为幂函数,且为奇函数.(1)求的值;(2)求函数在的值域.
设,a为实数.(1)分别求;(2)若,求a的取值范围.