如图, A B C ⏜ 是半径为 a 的半圆, A C 为直径,点 E 为 A C ⏜ 的中点,点 B 和点 C 为线段 A D 的三等分点.平面 A E C 外一点 F 满足 F B = D F = 5 a , F E = 6 a .
(1)证明: E B ⊥ F D ; (2)已知点 Q , R 分别为线段 F E , F B 上的点,使得 B Q = 2 3 F E , F R = 2 3 F B ,求平面 B E D 与平面 R Q D 所成二面角的正弦值.
已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1. (1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.
已知奇函数f(x)=(a、b、c是常数),且满足 (1)求a、b、c的值 (2)试判断函数f(x)在区间上的单调性并证明
已知函数f(x)是定义在R上的奇函数,当时,求: (1)当x<0时,f(x)的解析式 (2)f(x)在R上的解析式
已知集合A={x|x2-5x+6=0},B={x|x2+ax+6=0},且B⊆A,求实数a的取值范围.
已知全集U为R,集合A={x|0<x≤2},B={x|x<-3或x>1}. 求:(1)A∩B;(2)(∁UA)∩(∁UB);(3)∁U(A∪B).