如图,圆柱 O O 1 内有一个三棱柱 A B C - A 1 B 1 C 1 ,三棱柱的底面为圆柱底面的内接三角形,且 A B 是圆 O 的直径。
(Ⅰ)证明:平面 A 1 A C C 1 ⊥ 平面 B 1 B C C 1 ; (Ⅱ)设 A B = A A 1 。在圆柱 O O 1 内随机选取一点,记该点取自于三棱柱 A B C - A 1 B 1 C 1 内的概率为 P 。 (i)当点 C 在圆周上运动时,求 P 的最大值; (ii)记平面 A 1 A C C 1 与平面 B 1 O C 所成的角为 θ 0 ° < θ ≤ 90 ° 。当 P 取最大值时,求 cos θ 的值。
(本小题满分12分)如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,点D是AB的中点.(Ⅰ)求证:AC⊥BC1;(Ⅱ)求二面角的余弦值.
(本小题满分14分)设函数的图象经过点.(Ⅰ)求的解析式,并求函数的最小正周期和最值.(Ⅱ)若,其中是面积为的锐角的内角,且,求和的长.
已知函数 (1)若,求实数的取值范围; (2)若在区间[1,2]上恒成立,求实数的取值范围.
若数列的前项和为,点均在函数的图象上 (1)求数列的通项公式; (2)若数列是首项为1,公比为的等比数列,求数列的前项和.
、如图,已知四棱锥中,底面是直角梯形,,,,,平面,. (1)求证:平面;(2)求证:平面;(3)若M是PC的中点,求三棱锥M—ACD的体积.