已知直线的极坐标方程为=,圆M的参数方程为(其中为参数)。(1)将直线的极坐标方程化为直角坐标方程;(2)求圆M上的点到直线的距离的最小值。
已知向量、,,,.(1)求的值;(2)求与的夹角;(3)求的值.
化简:(1)(2).
已知函数.(1)求曲线在点处的切线方程;(2)设,如果过点可作曲线的三条切线,证明:
已知函数f(x)=x2+ax-lnx,a∈R;(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然对数的底数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.
某园林公司计划在一块为圆心,(为常数,单位为米)为半径的半圆形(如图)地上种植花草树木,其中弓形区域用于观赏样板地,区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.(1)设, ,用表示弓形的面积;(2)园林公司应该怎样规划这块土地,才能使总利润最大? 并求相对应的(参考公式:扇形面积公式,表示扇形的弧长)