已知中心在原点,焦点在轴上的椭圆C的离心率为,且经过点,过点P(2,1)的直线与椭圆C在第一象限相切于点M .(1)求椭圆C的方程;(2)求直线的方程以及点M的坐标;(3)是否存过点P的直线与椭圆C相交于不同的两点A、B,满足?若存在,求出直线l1的方程;若不存在,请说明理由.
在中,分别是内角的对边,且,且.(1)求角的大小;(2)若边上高为1,求面积的最小值.
选修4-5:不等式选讲已知,.(1)求的最小值;(2)证明:.
选修4—4:坐标系与参数方程 在直角坐标系中,圆的参数方程为参数).以为极点,轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆的极坐标方程;(Ⅱ)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.
(本小题满分10分)选修4-1:几何证明选讲如图,四点在同一圆上,与的延长线交于点,点在的延长线上.(1)若,,求的值;(2)若,证明:.
已知函数.(1)证明:;(2)当时,,求的取值范围.