已知中心在原点,焦点在轴上的椭圆C的离心率为,且经过点,过点P(2,1)的直线与椭圆C在第一象限相切于点M .(1)求椭圆C的方程;(2)求直线的方程以及点M的坐标;(3)是否存过点P的直线与椭圆C相交于不同的两点A、B,满足?若存在,求出直线l1的方程;若不存在,请说明理由.
(本小题满分12分)已知函数,x∈R(ω>0),在y轴右侧的第一个最高点的横坐标为.(1)求ω;(2)若将函数f(x)的图象向右平移个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的最大值及单调递减区间.
(本小题满分12分)已知几何体A—BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求此几何体的体积V的大小;(2)求异面直线DE与AB所成角的余弦值;(3)试探究在DE上是否存在点Q,使得AQBQ并说明理由.
如图,扇形AOB,圆心角AOB等于60°,半径为2,在弧AB上有一动点P,过P引平行于OB的直线和OA交于点C,设∠AOP=θ,求△POC面积的最大值及此时θ的值.
(本小题满分12分)设为数列{}的前n项和,=kn2+n,n∈N*,其中k是常数.(1)求及;(2)若对于任意的m∈N*,,,成等比数列,求k的值.
(本小题满分10分)已知:方程有两个不等的负实根,:方程无实根. 若或为真,且为假. 求实数的取值范围。