盒中有5个红球,11个蓝球。红球中有2个玻璃球,3个木质球;蓝球中有4个玻璃球,7个木质球。现从中任取一球,假设每个球摸到的可能性都相同,若已知取到的球是玻璃球,求它是蓝球的概率。
已知函数f(x)=ax2-(2a+1)x+2ln x,a∈R.(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;(2)求f(x)的单调区间.
已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围.
已知函数f(x)=x2+bx+c(b,c∈R),对任意的x∈R,恒有f′(x)≤f(x).(1)证明:当x≥0时,f(x)≤(x+c)2;(2)若对满足题设条件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
已知函数f(x)=ax3-x2+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.(1)求a,c,d的值;(2)若h(x)=x2-bx+-,解不等式f′(x)+h(x)<0.
已知函数f(x)=.(1)若f(x)>k的解集为{x|x<-3,或x>-2},求k的值;(2)对任意x>0,f(x)≤t恒成立,求t的取值范围.