盒中有5个红球,11个蓝球。红球中有2个玻璃球,3个木质球;蓝球中有4个玻璃球,7个木质球。现从中任取一球,假设每个球摸到的可能性都相同,若已知取到的球是玻璃球,求它是蓝球的概率。
如图,在直三棱柱中,底面△为等腰直角三角形,,为棱上一点,且平面⊥平面. (Ⅰ)求证:为棱的中点;(Ⅱ)为何值时,二面角的平面角为.
设等差数列的前项和为,满足:.递增的等比数列前项和为,满足:. (Ⅰ)求数列,的通项公式; (Ⅱ)设数列对,均有成立,求.
已知向量,,函数的图象与直线的相邻两个交点之间的距离为. (Ⅰ)求的值; (Ⅱ)求函数在上的单调递增区间.
下面四个图案,都是由小正三角形构成,设第个图形中有个正三角形中所有小正三角形边上黑点的总数为. 图1图2图3图4 (Ⅰ)求出,,,; (Ⅱ)找出与的关系,并求出的表达式; (Ⅲ)求证:().
设函数,若在点处的切线斜率为. (Ⅰ)用表示; (Ⅱ)设,若对定义域内的恒成立,求实数的取值范围;