(本小题满分12分)如图,某地有三家工厂,分别位于矩形ABCD的两个顶点A,B及CD的中点P处.AB=20km,BC=10km.为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A,B等距的一点O处,建造一个污水处理厂,并铺设三条排污管道AO,BO,PO.记铺设管道的总长度为ykm.(1)按下列要求建立函数关系式: (i)设(rad),将表示成的函数;(ii)设(km),将表示成的函数;(2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短。
某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温
[10,15)
[15,20)
[20,25)
[25,30)
[30,35)
[35,40)
天数
2
16
36
25
7
4
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
ΔABC 的内角 的对边分别为 a , b , c , 已知 sin A + 3 cos A = 0 , a = 2 7 , b = 2 .
(1)求角 A 和边长 c ;
(2)设 D 为 BC 边上一点,且 ,求 ΔABD 的面积.
设 n为正整数,集合 A= { α | α = t 1 , t 2 , ⋯ , t n , t k ∈ 0 , 1 , k = 1 , 2 , ⋯ , n } .对于集合 A中的任意元素 α = x 1 , x 2 , ⋯ , x n 和 β = y 1 , y 2 , ⋯ , y n ,记
M( α , β )= 1 2 x 1 + y 1 - x 1 - y 1 + x 2 + y 2 - x 2 - y 2 + ⋯ + x n + y n - x n - y n .
(Ⅰ)当 n=3时,若 α = 1 , 1 , 0 , β = 0 , 1 , 1 ,求 M( α , α )和 M( α , β )的值;
(Ⅱ)当 n=4时,设 B是 A的子集,且满足:对于 B中的任意元素 α , β ,当 α , β 相同时, M( α , β )是奇数;当 α , β 不同时, M( α , β )是偶数.求集合 B中元素个数的最大值;
(Ⅲ)给定不小于2的 n,设 B是 A的子集,且满足:对于 B中的任意两个不同的元素 α , β , M( α , β )=0.写出一个集合 B,使其元素个数最多,并说明理由.
已知抛物线C: y 2 =2px经过点 P (1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
(Ⅰ)求直线l的斜率的取值范围;
(Ⅱ)设O为原点, QM ⃑ = λ QO ⃑ , QN ⃑ = μ QO ⃑ ,求证: 1 λ + 1 μ 为定值.
设函数 f x =[ a x 2 - 4 a + 1 x + 4 a + 3 ] e x .
(1)若曲线在点(1, f 1 )处的切线与 x 轴平行,求 a ;
(2)若 f x 在 x = 2 处取得极小值,求 a 的取值范围.