已知方向向量的直线l 过点()和椭圆C:的焦点,且椭圆的中心关于直线l的对称点在椭圆C的右准线上。(1)求椭圆C的方程;(2)是否存在过点E(-2,0)的直线m交椭圆C于M、N,满足(O为原点),若存在求出直线的方程,若不存在,请说明理由。
(本题10分)已知圆.若圆的切线在x轴和y轴上截距相等,求切线的方程;
(本小题满分14分)定长为3的线段两端点、分别在轴、轴上滑动,在线段上,且. (1)求点的轨迹的方程; (2)设过且不垂直于坐标轴的动直线交轨迹于、两点,问:线段上是否存在一点,使得以、为邻边的平行四边形为菱形?作出判断并证明.
(本小题满分13分)已知椭圆两焦点分别为、,是椭圆在第一象限弧上的一点,并满足,过点作倾斜角互补的两条直线、分别交椭圆于A、B两点. (1)求点坐标; (2)证明:直线的斜率为定值,并求出该定值.
(本小题满分12分)已知椭圆的左、右顶点分别为、,曲线是以椭圆中心为顶点,为焦点的抛物线. (1)求曲线的方程; (2)直线与曲线交于不同的两点、.当时,求直线的倾斜角的取值范围.
(本小题满分12分)已知实数满足方程. (1)求的最大值和最小值; (2)求的最大值与最小值.