某校从参加高一年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段,…后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅲ)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求至多有人在分数段的概率.
在中,,,分别是角,,的对边,向量,,且//. (Ⅰ)求角的大小; (Ⅱ)设,且的最小正周期为,求在区间上的最大值和最小值.
已知函数. (Ⅰ)设函数的图像的顶点的纵坐标构成数列,求证:为等差数列; (Ⅱ)设函数的图像的顶点到轴的距离构成数列,求的前项和.
定义在上的单调函数满足,且对任意都有 (1)求证:为奇函数; (2)若对任意恒成立,求实数的取值范围.
某医药研究所开发一种新药,据监测,如果成人按规定剂量服用该药,服药后每毫升血液中的含药量与服药后的时间之间近似满足如图所示的曲线.其中是线段,曲线段是函数是常数的图象. (1)写出服药后每毫升血液中含药量关于时间的函数关系式; (2)据测定:每毫升血液中含药量不少于时治疗有效,假若某病人第一次服药为早上,为保持疗效,第二次服药最迟是当天几点钟? (3)若按(2)中的最迟时间服用第二次药,则第二次服药后再过,该病人每毫升血液中含药量为多少?
已知函数,且. (1)求的值,并确定函数的定义域; (2)用定义研究函数在范围内的单调性; (3)当时,求出函数的取值范围.