某医药研究所开发一种新药,据监测,如果成人按规定剂量服用该药,服药后每毫升血液中的含药量与服药后的时间之间近似满足如图所示的曲线.其中是线段,曲线段是函数是常数的图象.(1)写出服药后每毫升血液中含药量关于时间的函数关系式;(2)据测定:每毫升血液中含药量不少于时治疗有效,假若某病人第一次服药为早上,为保持疗效,第二次服药最迟是当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后再过,该病人每毫升血液中含药量为多少?
已知椭圆,椭圆以的长轴为短轴,且与有相同的离心率. (1)求椭圆的方程; (2)设为坐标原点,点、分别在椭圆和上,,求直线的方程.
设函数. (1)设,,,证明:在区间内存在唯一的零点; (2)设,若对任意、,有,求的取值范围.
一汽车厂生产、、三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆)
按类型分层抽样的方法在这个月生产的轿车中抽取辆,其中有类轿车辆. (1)求的值; (2)用分层抽样的方法在类轿车中抽取一个容量为的样本.将该样本看成一个总体,从中任取辆,求至少有辆舒适型轿车的概率; (3)用随机抽样的方法从类舒适型轿车中抽取辆,经检测它们的得分如下:、、、、、、、.把这辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值 不超过的概率.
如图,在三棱锥中,是等边三角形,. (1)证明::; (2)证明:; (3)若,且平面平面,求三棱锥体积.
在中,内角、、的对边分别为、、,且. (1)求角的大小; (2)若,,求的面积.