某医药研究所开发一种新药,据监测,如果成人按规定剂量服用该药,服药后每毫升血液中的含药量与服药后的时间之间近似满足如图所示的曲线.其中是线段,曲线段是函数是常数的图象.(1)写出服药后每毫升血液中含药量关于时间的函数关系式;(2)据测定:每毫升血液中含药量不少于时治疗有效,假若某病人第一次服药为早上,为保持疗效,第二次服药最迟是当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后再过,该病人每毫升血液中含药量为多少?
过轴上的动点,引抛物线两条切线,为切点。(Ⅰ)求证:直线过定点,并求出定点坐标;(Ⅱ)若,设弦的中点为,试求的最小值(为坐标原点).
如图,已知平面平面=,,且,二面角. (Ⅰ)求点到平面的距离;(Ⅱ)设二面角的大小为,求的值.
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为.(Ⅰ)求乙投球的命中率;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.
已知向量, , .(Ⅰ)求的值; (Ⅱ)若, , 且, 求的值。
(本小题满分14分)已知f(x)=(x∈R)在区间[-1,1]上是增函数.(Ⅰ)求实数a的值组成的集合A;(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.