已知椭圆C:的两个焦点为F1、F2,点P在椭圆C上,且|PF1|=,|PF2|= , PF1⊥F1F2. (1)求椭圆C的方程;(6分)(2)若直线L过圆x2+y2+4x-2y=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程.
若,,函数图象对称中心到对称轴最小距离为,当时f(x)的最大值为1.(1)求f(x)解析式;(2)若,,求x的值.
(本小题满分12分) 已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足 点P是线段F1Q与该椭圆的交点, 点T在线段F2Q上,并且满足 (Ⅰ)设为点P的横坐标,证明; (Ⅱ)求点T的轨迹C的方程;(Ⅲ)试问:在点T的轨迹C上,是否存在点M, 使△F1MF2的面积S=若存在,求∠F1MF2的正切值;若不存在,请说明理由.
(本小题满分12分)一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是偶函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有奇函数的卡片则停止抽取,否则继续进行. 求抽取次数的分布列、数学期望和方差.
(本小题满分12分)已知函数R).(1)若在时取得极值,求的值;(2)求的单调区间;(3)求证:当时,.
(本小题满分12分)如图:在三棱锥中,是直角三角形,,,点、分别为、的中点.(Ⅰ)求证:;(Ⅱ)求直线与平面所成的角的大小;(Ⅲ)求二面角的正切值.