为从甲、乙两名运动员中选拔一人参加2010年广州亚运会跳水项目,对甲、乙两名运动员进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出茎叶图如图所示(Ⅰ)从平均成绩及发挥稳定性的角度考虑,你认为选派哪名运动员合适?(Ⅱ)若将频率视为概率,对甲运动员在今后3次比赛成绩进行预测,记这3次成绩中高于80分的次数为,求的分布列及数学期望。
如图,一简单组合体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC平面ABC.(1)证明:平面ACD平面;(2)若,,,试求该简单组合体的体积V.
已知向量,,且,其中是△ABC的内角,分别是角的对边.(1) 求角的大小;(2) 求的取值范围.
(本小题满分14分)已知等比数列的前项和为(Ⅰ)求数列的通项公式;(Ⅱ)设数列满足,为数列 的前项和,试比较 与的大小,并证明你的结论.
(本小题满分12分)已知均在椭圆上,直线、分别过椭圆的左右焦点、,当时,有.(I)求椭圆的方程;(II)设P是椭圆上的任一点,为圆的任一条直径,求的最大值.
(本小题满分12分)在四棱锥中,平面,底面为矩形,.(I)当时,求证:;(II)若边上有且只有一个点,使得,求此时二面角的余弦值.